
Question 1

Problem Statement :

You are given an array a of N Integers and asked to split the array a into k consecutive

segments such that each element of a belongs to exactly one segment and the sum of

the cost of all segments is minimum.

We define the cost of some segment t as the sum of distances between the first and last

occurrence for each unique element in the segment t.

Your task is to find the minimum possible total sum of the cost of all segments.

Input Format

 The first line contains an integer, n, denoting the number of elements in a.
 The next line contains an integer, k, denoting the Number of required consecutive

segments..

 Each line i of the n subsequent lines (where 0 <=i<n) contains an integer describing a[i].

Constraints :

 1 <= n<= 35000
 1 <=k <=min(n,100)
 1 <=a[i] <=n

Sample

Input

Sample

Output Explanation

1

1

1

0 The only possible segment is [1] The cost is 1-1=0

7

2

1

6

6

4

6

6

6

3 We can divide the array into [1,6,6,4] and [6,6,6] Cost of [1,6,6, 4] will be (1-1)+(3-2)+(4-4)=1 and cost of [6 ,6,6] will be 3-1=2. Total

cost would be 1+2=3

C++

#include<bits/stdc++.h>

using namespace std;
const int N = 4e5, M = 110, inf = 0x3f3f3f3f;
int a[N], dp[N][M], lst[N], pre[N], nxt[N], i, j, n, m, L, R, sum;

int cal(int l, int r) {
 while (L < l) {
 if (nxt[L] <= R)sum -= nxt[L] - L; L++; } while (L > l) {
 --L;
 if (nxt[L] <= R)sum += nxt[L] - L;
 }
 while (R < r) { ++R; if (pre[R] >= L)sum += R - pre[R];
 }
 while (R > r) {
 if (pre[R] >= L)sum -= R - pre[R];
 R--;
 }
 return sum;
}

void solve(int l, int r, int L1, int R1, int now)
{
 if (l > r || L1 > R1)return;
 int mid = (l + r) / 2, val = inf, pos;
 for (int i = L1; i < mid && i <= R1; ++i)
 {
 int tmp = dp[i][now - 1] + cal(i + 1, mid);
 if (tmp < val)pos = i, val = tmp;
 }
 dp[mid][now] = val;
 solve(l, mid - 1, L1, pos, now);
 solve(mid + 1, r, pos, R1, now);
}

int main() {
 ios::sync_with_stdio(false);
 cin.tie(nullptr);
 cout.tie(nullptr);
 cin >> n >> m;
 for (i = 1; i <= n; ++i) cin >> a[i];
 for (i = 1; i <= n; ++i) dp[i][0] = inf, pre[i] = lst[a[i]], lst[a[i]] = i;
 for (i = 1; i <= n; ++i) lst[a[i]] = n + 1;
 for (i = n; i; --i) nxt[i] = lst[a[i]], lst[a[i]] = i;
 for (i = 1; i <= m; ++i) solve(1, n, 0, n, i);
 cout << dp[n][m] << "\n";
}

Question 2

Problem Statement : Wael wants to play Santa this year, so he prepared gifts for all

the children of the neighborhood. He decided to pack the gifts in boxes and give each

child a box. Let’s define the Value of the box as the number of distinct types of gifts

inside this box.

Wael has N gifts, such that the type of each gift i is A[i]. Wael wants to pack exactly K

boxes, and he has to put in each box a sub-array of consecutive gifts

Wael wants to maximize the total value of all boxes with gifts. Your task is to help him

determine this maximum possible total value

Notes

 Each gift should be put in exactly one box, and each box should contain a sub-array of
consecutive gifts.

 A box cannot be left empty

Input Format

 The first line contains an integer, N, denoting the number of elements in A

 The next line contains an integer, K, denoting the number of boxes.
 Each line i of the N subsequent lines (where 0≤i<N) contains an integer describing Ai

Constraints

 1 <= N <= 35000
 1 <= K <= Min (N,50)
 1 <= A[i] <= N

Sample

Input

Sample

Output Explanation

1

1

1

1 Wael will put the only gift in a box so the total value will be 1.

4

1

1

2

2 Wael has only one box he has to put all gifts in it, so that there are two types of gifts in the box, so the value is equal to 2

Sample

Input

Sample

Output Explanation

2

1

7

2

1

3

3

1

4

4

4

5 It is optimal to put the first two gifts in the first box, and all the rest in the second There are two distinct types in the first box, and three in

the second box then, so the total value is 5.

C++
#include <bits/stdc++.h>
using namespace std;
int ans = INT_MIN;

void solve(int a[], int n, int k, int index, int count, int maxval)
{

 if (k == 1) {
 maxval = max(maxval, count);
 count = 0;
 map<int, int>mp;
 for (int i = index; i < n; i++) {
 mp[a[i]]++;
 }
 count = mp.size();
 mp.clear();

 maxval = max(maxval, count);

 ans = max(ans, maxval);
 return;
 }
 count = 0;
 map<int, int>mp;
 for (int i = index; i < n; i++) {
 mp[a[i]]++;
 count = mp.size();

 maxval = max(maxval, count);

 solve(a, n, k - 1, i + 1, count, maxval);

 }
}
// Driver Code

int main()
{
 int arr[] = {1, 1};
 int k = 2; // K divisions
 int n = 2; // Size of Array
 solve(arr, n, k, 0, 0, 0);
 cout << ans << "\n";
}

Question 3

Problem Statement :

A subarray of array A is a segment of contiguous elements in array A.

Given an array A of N elements, you can apply the following operations as many times

as you like:

– Choosing a subarray [L, R] and subtracting 1 from each element in this subarray. The

cost of this operation is X.

– Choosing an index i such that A[i] is positive, and setting A[i] = 0. The cost of this

operation in Y.

Your task is to make all the elements equal to 0 and find the minimum cost to do so.

Input Format

 The first line contains an integer, N., denoting the number of elements in A.
 The next line contains an integer, X, denoting the cost of the first operation.
 The next line contains an integer. Y, denoting the cost of the second operation

 Each line i of the N subsequent lines (where 1 <=i<= N) contains an Integer describing Ai.

Constraints

 1<=N<=10^5
 1<=X<=10
 1<=Y<=10^4
 1<=A[i]<=10^8

Sample Input 1

1

1

10

1

Sample Output 1

1

Explanation:

N=1 X=1 Y=10 A=[1]. The optimal solution is to perform one operation of the first type

on the subarray [1,N].

Sample Input 2

3

1

1

1

1

1

Sample Output 2

1

Explanation:

N=3 X=1 Y=1 A=[1,1,1] The optimal solution is to perform one operation of the first type

on the subarray[1,N];

C++
Java
Python

#include <iostream>
using namespace std;
int main ()
{
 int arr[] = { 1, 1, 1 };

 int X = 1;
 int Y = 1;
 int ans = 0;
 int arrSize = sizeof (arr) / sizeof (arr[0]);

 for (int i = 0; i < arrSize; i++)
 {
 arr[i]--;
 }
 ans = ans + X;

 for (int i = 0; i < arrSize; i++)
 {
 if (arr[i] != 0)
 {
 arr[i] = 0;
 ans = ans + Y;
 }
 }
 cout << ans;
 return 0;
}

https://prepinstaprime.com/syllabus/infytq-syllabus

Question 4

Problem Statement :

Given an array A of N elements. You should choose a value B such that (B>=0), and

then for each element in A set A[i]=A[i](+)B where is the bitwise XOR.

Print the minimum number of inversions in array A that you can achieve after choosing

the value of B optimally and setting A[i] = A[i] (+) B. Since the answer might be large,

print it modulo (10^9+7)

Input Format

 The first line contains an integer, N. denoting the number of elements in A
 Then the next line contains N elements, denoting the elements in A.

Input :

4

1 0 3 2

Output

1

C++
#include <bits/stdc++.h>
#define sz(x) ((int)(x).size())
#define inf mod

using namespace std;

const int maxn = (int) 5e6 + 100;
int n, t[2][maxn], id = 1;
int dp[2][30];
vector < int >g[maxn];

void add (int x, int pos)
{
 int v = 0;
 for (int i = 29; i >= 0; i--)

 {
 int bit = ((x >> i) & 1);
 if (!t[bit][v])
 t[bit][v] = id++;
 v = t[bit][v];
 g[v].push_back (pos);
 }
}

void go (int v, int b = 29)
{
 int l = t[0][v], r = t[1][v];
 if (l)
 go (l, b - 1);
 if (r)
 go (r, b - 1);
 if (!l || !r)
 return;
 int res = 0;
 int ptr = 0;
for (auto x:g[l])
 {
 while (ptr < sz (g[r]) && g[r][ptr] < x)
 ptr++;
 res += ptr;
 }
 dp[0][b] += res;
 dp[1][b] += sz (g[l]) * 1ll * sz (g[r]) - res;
}

int main ()
{
 cin >> n;
 for (int i = 1; i <= n; i++)
 {
 int x;
 cin >> x;
 add (x, i);
 }
 go (0);
 int inv = 0;
 int res = 0;
 for (int i = 0; i <= 29; i++)
 {
 inv += min (dp[0][i], dp[1][i]);
 if (dp[1][i] < dp[0][i])
 res += (1 << i);
 }
 cout << inv;
}

Question 5

Problem Statement :

 Wael is well-known for how much he loves the bitwise XOR operation, while kaito is

well known for how much he loves to sum numbers, so their friend Resli decided

to make up a problem that would enjoy both of them. Resil wrote down an array A of

length N, an integer K and he defined a new function called Xor- sum as follows

 Xor-sum(x)=(x XOR A[1])+(x XOR A[2])+(x XOR A[3])+…………..+(x XOR A[N])

 Can you find the integer x in the range [0,K] with the maximum Xor-sum (x) value?

 Print only the value.

 Input format

 The first line contains integer N denoting the number of elements in A.
 The next line contains an integer, k, denoting the maximum value of x.

 Each line i of the N subsequent lines(where 0<=i<=N) contains an integer describing Ai.

 Constraints

 1<=N<=10^5
 0<=K<=10^9
 0<=A[i]<=10^9

 Sample Input 1

 1

 0

 989898

 Sample Output 1

 989898

 Explanation:

 Xor_sum(0)=(0^989898)=989898

 Sample Input 2

 3

 7

 1

 6

 3

 Sample Output 2

 14

 Explanation

 Xor_sum(4)=(4^1)+(4^6)+(4^3)=14.

 Sample Input 3

 4

 9

 7

 4

 0

 3

 Sample Output 3

 46

 Explanation:

 Xor_sum(8)=(8^7)+(8^4) +(8^0)+(8^3)=46.

C++
Java
Python
#include<bits/stdc++.h>
using namespace std;
unordered_map < int, int >L;

int main ()
{

 int n, k, m;
 cin >> n >> k;
 vector < int >v (n);

 for (int i = 0; i < n; i++) { cin >> m;
 v[i] = m;
 int j = 0;
 while (m)
 {
 L[j] += (m & 1);
 m >>= 1;
 j++;
 }
 }

 int j = 0, K = k, ans = 0, ans2 = 0;
 while (K)
 {
 j++;
 K >>= 1;
 }

 for (int i = j; i > 0; i--)
 {
 if (L[i - 1] < n - L[i - 1])
 ans != 1;
 ans <<= 1; } ans >>= 1;
 while (ans > k)
 {
 ans &= 0;
 ans <<= 1;
 k <<= 1;
 }

for (auto i:v)
 ans2 += ans ^ i;

 cout << ans2;

}

	Question 1
	Question 2
	Question 3
	Question 4
	Question 5

